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ABSTRACT
Transactions can simplify distributed applications by hid-
ing data distribution, concurrency, and failures from the
application developer. Ideally the developer would see the
abstraction of a single large machine that runs transactions
sequentially and never fails. This requires the transactional
subsystem to provide opacity (strict serializability for both
committed and aborted transactions), as well as transparent
fault tolerance with high availability. As even the best ab-
stractions are unlikely to be used if they perform poorly, the
system must also provide high performance.
Existing distributed transactional designs either weaken

this abstraction or are not designed for the best performance
within a data center. This paper extends the design of FaRM
— which provides strict serializability only for committed
transactions — to provide opacity while maintaining FaRM’s
high throughput, low latency, and high availability within
a modern data center. It uses timestamp ordering based on
real time with clocks synchronized to within tens of mi-
croseconds across a cluster, and a failover protocol to ensure
correctness across clock master failures. FaRM with opacity
can commit 5.4 million neworder transactions per second
when running the TPC-C transaction mix on 90 machines
with 3-way replication.

∗Also with Imperial College London.
†Work done while at Microsoft Research.
‡Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300069

KEYWORDS
distributed transactions, RDMA, opacity, global time, clock
synchronization, multi-version concurrency control

ACM Reference Format:
Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Geor-
gios Chatzopoulos, Aleksandar Dragojević, Dushyanth Narayanan,
and Miguel Castro. 2019. Fast General Distributed Transactions
with Opacity. In 2019 International Conference on Management of
Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3299869.
3300069

1 INTRODUCTION
Cloud data centers provide many relatively small, individu-
ally unreliable servers. Cloud services need to run on clus-
ters of such servers to maintain availability despite indi-
vidual server failures. They also need to scale out to in-
crease throughput beyond that of a single server. For latency-
sensitive applications that need to keep data in mainmemory,
scale-out is also required to go beyond the memory limits of
a single server.
The challenge is that distributed applications, especially

stateful ones, are much harder to program than single-
threaded or even multi-threaded applications. Our goal is to
make them easier to program by providing the abstraction
of a single large machine that runs transactions one at a
time and never fails. This requires a distributed transactional
system with the following properties:
• Serializability: All executions are equivalent to some
serial ordering of committed transactions.
• Strictness: This ordering is consistent with real time.
• Snapshot reads: All transactions see a consistent snap-
shot of the database until they commit or abort.
• High availability: The system recovers transparently
from server failures and downtimes are short enough
to appear as transient dips in performance.

The combination of the first three properties is also referred
to as opacity [13]. Intuitively, opacity extends the proper-
ties of strict serializability to aborted transactions, i.e. these
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transactions also see a consistent snapshot at a point in time
consistent with real-time ordering, until they abort.
As even the best abstractions are unlikely to be used if

they perform poorly, the system must also provide scalabil-
ity and high performance. Existing designs either weaken
this abstraction or are not designed for the best performance
within a data center. Spanner [6] is a geo-distributed data-
base that provides opacity with availability but does not
provide low latency and high throughput in the data center.
Several transactional systems [4, 10, 20, 35] have leveraged
large amounts of cheap DRAM per server, fast commodity
networking hardware, and RDMA to achieve good perfor-
mance in the data center. RDMA can improve networking
throughput and latency by orders of magnitude compared to
TCP [9]. One-sided RDMA can reduce CPU costs and latency
further compared to two-way messaging using RDMA, as it
bypasses the remote CPU. Several distributed transactional
protocols [4, 10, 35] use one-sided RDMA to send fewer
messages and achieve higher performance than two-phase
commit (2PC) within the data center.

Current designs that use one-sided RDMA do not provide
opacity. FaRMv1 [9, 10] and DrTM [4, 33] provide scalability,
availability, and strict serializability for committed but not
for aborted transactions. Optimistically executing transac-
tions in these systems might read inconsistent state with
the guarantee that such transactions would eventually abort.
NAM-DB [35] provides read snapshots but not strictness,
serializability, or high availability.
In this paper, we describe FaRMv2, which extends the

original design and implementation of FaRMv1 to provide
read snapshots to all transactions. FaRMv2 uses a novel
timestamp-ordering protocol that leverages the low latency
of RDMA to synchronize clocks. Timestamps are based on
real time, which scales well as it allows machines to use their
local clocks to generate timestamps. However, since clocks
are not perfectly synchronized, the transaction protocol must
“wait out the uncertainty” when generating read and write
timestamps, which introduces latency. FaRMv2 leverages
low-latency, CPU-efficient RDMA-based communication to
synchronize clocks frequently over the network to achieve
uncertainties in the tens of microseconds, two orders of mag-
nitude lower than in Spanner [6]. Unlike Spanner, FaRMv2
does not require atomic clocks or GPS. Instead, servers use
the CPU cycle counter and synchronize with a clock mas-
ter elected from all the servers in the system. Timestamp
ordering is maintained across clock master failures using a
clock master failover protocol. Our design and implemen-
tation also supports multi-versioning which improves the
performance of read-only transactions. Old versions are kept
in memory with efficient allocation and garbage collection.

The paper makes the following novel contributions:

• A mechanism to synchronize clocks to within tens of
microseconds by leveraging RDMA.
• A transaction protocol with opacity that uses global
time and one-sided RDMA.
• A clock failover protocol that keeps timestamps mono-
tonic across clock master failures without requiring
special hardware such as atomic clocks or GPS.
• An efficient thread-local, block-based allocator and
garbage collector for multi-versioning.

FaRMv2 can commit 5.4 million neworder transactions per
second when running the TPC-C transaction mix on a cluster
of 90 machines with 3-way replication for fault tolerance. It
retains the high availability of FaRMv1 and can recover to
full throughput within tens of milliseconds of a server failure.
We believe FaRMv2 has the highest known throughput for
this transaction mix of any system providing opacity and
high availability.

2 MOTIVATION
Serializability is an easy isolation level for developers to
understand because it avoids many anomalies. We found
that strictness and opacity are also important for developers
using a transactional platform.

Strict serializability [28] means that the serialization order
of transactions corresponds to real time. If A completes be-
fore B starts, then any correct execution must be equivalent
to a serial one where A appears before B. This is important
when clients communicate using some channel outside the
system as is often the case, for example, when other systems
are layered on top of the database.
Opacity [13] is the property that transaction executions

are strictly serializable for aborted transactions as well as
committed transactions. This simplifies programming by
ensuring that invariants hold during transaction execution.
Many existing systems provide opacity either by using pes-
simistic concurrency control with read locks (e.g., Span-
ner [6]), or by using timestamp ordering to provide read
snapshots during execution (e.g., Hekaton [7, 22]). But many
systems that use optimistic concurrency control (OCC) [21]
do not provide read snapshots for aborted transactions, e.g.,
FaRMv1 [9, 10] and DrTM [4, 33]. This design decision can
improve performance but it imposes a large burden on de-
velopers. Since developers cannot assume invariants hold,
they must program defensively by checking for invariants
explicitly in transaction code. Relational databases reduce
this burden by providing mechanisms to check constraints
automatically after each SQL statement, but this can add a
non-trivial performance overhead and it still requires the
developer to write all the relevant constraints.

FaRM and DrTM provide a low level transactional memory
model rather than a relational model. This allows developers



to write highly performant C++ code to manipulate arbi-
trary pointer-linked data structures in transactions, but this
flexibility comes at a price. It is not feasible to do efficient
automatic constraint checking after every C++ statement.
Additionally, lack of opacity can lead to violations of mem-
ory safety. For example, a transaction could read memory
that has been freed and reused, which could cause a crash or
an infinite loop. We illustrate the difficulty of programming
without opacity by discussing the implementation of hash
table and B-tree indices on top of FaRM.
The FaRM hash table [9] uses chained associative hop-

scotch hashing. Each key lookup reads two adjacent array
buckets and zero or more overflow buckets. FaRMv1 ensures
that each of these objects is read atomically, but they may
not all be read from the same consistent snapshot because
FaRMv1 does not ensure opacity. This can lead to several
anomalies, for example, a concurrent transaction could move
keyA from an overflow bucket to an array bucket while delet-
ing key B, causing the lookup transaction to incorrectly miss
A. FaRMv1 solves this problem by adding 64-bit incarnations
to all object headers, replicating them in all overflow bucket
pointers, and adding additional version fields to each array
bucket. This adds complexity and overhead, which could be
avoided by providing opacity.

The FaRM B-Tree implementation keeps cached copies of
internal nodes at each server to improve performance. Fence
keys [12, 24] are used to check the consistency of parent-to-
child traversals. Strict serializability is maintained by always
reading leaf nodes uncached and adding them to the read set
of the transaction. The cached internal nodes are shared read-
only across all threads without making additional thread-
local or transaction-local copies. This is extremely efficient
as most lookups require a single uncached read, and do not
make copies of internal nodes.

Lack of opacity can lead to several anomalies when using
this B-tree, for example, one developer reported that they
had found a bug because “They inserted a key into a B-
Tree, looked up the same key in the same transaction, and
it was not there.” On investigation, we found that this was
possible when a concurrent transaction created a split in
the B-Tree that migrated the key in question (A) to a new
leaf object, deleted A, and the server running the original
transaction evicted some internal nodes on the path from the
root to the new leaf from the cache. Even though the original
transaction would have aborted in this case, the programmer
still needs to reason about execution before a transaction
aborts. Reasoning about complex corner cases like this one
is hard. Opacity simplifies programming by providing strong
isolation guarantees even for transactions that abort.

In this paper, our contribution is adding opacity to FaRM
to improve programmability while retaining good perfor-
mance. It is hard to quantify the benefit of providing a better

developer experience. Based on our deployment experience
—more than two years of FaRMv1 followed bymore than two
years of FaRMv2 — we can say that our developers praised
the addition of opacity and we no longer see bug reports
due to opacity violations. We were also able to remove the
additional version fields per array bucket in the hash table
and convert the “fat pointers” for overflow chains to normal
pointers, which simplified the code and reduced space usage.

3 BACKGROUND
3.1 FaRM
FaRM [9, 10] provides a transactional API to access objects
in a global flat address space that pools together the memory
of a cluster. The API is exposed as library calls, and both
application code and FaRM run within the same process on
each machine. Within a transaction, the application can allo-
cate, free, read and write objects regardless of their location
in the cluster, as well as execute application logic. The thread
executing the code for a transaction also acts as the coor-
dinator for the distributed commit of that transaction. The
execution model is symmetric: all threads in a cluster can be
coordinators and all servers can hold in-memory objects.

FaRM objects are replicated using primary-backup replica-
tion. The unit of replication is a region (e.g., 2 GB). All objects
in a region have the same primary and backup servers.
FaRM implements optimistic concurrency control to en-

able using one-sided RDMA to read objects from remote
primaries during transaction execution. Locking remote ob-
jects would require using the remote CPU or using additional
atomic RDMA operations. So no locks are taken during trans-
action execution. Writes are buffered within the transaction
context. At the end of the execution phase, the application
calls commit invoking the commit protocol. The commit
protocol integrates concurrency control and replication for
fault-tolerance to achieve lower message counts and fewer
round trips than approaches which build distributed commit
on top of replication [6]. The commit protocol first locks
write sets at their primary replicas and then validates read
sets to ensure serializability.

FaRMhas transparent fault tolerancewith high availability
through fast failure detection, a reconfiguration protocol for
adding/removing machines, parallel transaction recovery
after failure, and background data re-replication to restore
replication levels. Unlike traditional 2PC, FaRM does not
block transactions when a coordinator fails: coordinator state
is recovered in parallel from logs on participants.

3.2 One-sided RDMA
CPU is the bottleneck when accessing in-memory data us-
ing the fast networking hardware deployed in data centers
today. So FaRM uses one-sided RDMA operations, which are



handled entirely by the remote NIC, to improve performance.
Remote objects are read using RDMA reads from their pri-
mary replica during transaction execution and read set vali-
dation uses RDMA reads of object versions from the primary.
Unlike traditional 2PC protocols, primaries of read-only par-
ticipants do no CPU work in FaRM as RDMA requests are
served by their NICs. Backups of read-only participants do
no work on the CPU or on the NIC. Backups of write-set
objects do not do any CPU work on the critical path of the
transaction; coordinators do a single one-sided RDMA write
to each backup to commit a transaction, and only wait for
the hardware acknowledgement from the NIC. This commit
message is processed asynchronously by the backup’s CPU.

There has been a lively debate on the merits of one-sided
RDMA [17–20, 32]. The key issue is that one-sided operations
and deployed congestion control mechanisms [26, 37] require
the reliable connected (RC) mode of RDMA. This requires
per-connection (queue pair) state which grows with the size
of the cluster, and degrades performance when the state
cannot be cached on the NIC and must be fetched from host
memory instead. Sharing connection state across cores can
improve scalability but adds CPU synchronization costs [9].
An alternative approach, eRPC [17], uses connectionless

unreliable datagrams (UD). These scale better at the NIC level
as a single endpoint (queue pair) can send and receive to all
servers in the cluster [17, 18, 20]. This approach requires two-
sidedmessaging, as one-sided RDMAs are not supported over
UD. It uses an RTT-based congestion control mechanism [26]
implemented in software.
The scalability of RC has been improving with newer

NICs. The RDMA performance of the Mellanox CX3 starts
dropping at 256 connections per machine. More recent NICs
(CX4, CX5, and CX6) have better scalability. We measured
the scalability of RDMA reads on CX4 RoCE NICs between
two machines connected by a 100Gbps switch. We emulated
larger clusters by increasing the number of queue pairs per
machine. We compared this with the performance of 64-byte
reads over eRPC using one queue pair per thread, which
is 15 million reads/s. The RDMA throughput is 35 million
reads/s with 28 queue pairs per machine, and RDMA reads
perform better than eRPC with up to 3200 queue pairs per
machine, where they equal eRPC performance. We do not
have CX5 hardware and could not measure the performance
of 64-byte reads on CX5. With a small number of queue
pairs, RDMA writes [17] and reads [16] on CX5 have up to
2x higher throughput than eRPC for reads between 512 bytes
and 32 KB. For larger transfers both approaches are limited
by the line rate.
These results and other recent work [32] show that one-

sided RDMA can provide a significant performance advan-
tage for moderate size clusters. So we added opacity to FaRM
while retaining all the one-sided RDMA optimizations.

4 DESIGN
4.1 Global time
Using one-sided RDMA reads during execution makes it
challenging to provide opacity with scalability. Pessimistic
concurrency control schemes such as Spanner [6] provide
opacity by using read locks but this requires two-way mes-
saging and remote CPU usage on read-only participants.

Timestamp ordering enables opacity by allowing transac-
tions to read a consistent snapshot defined by a read times-
tamp. The challenge is to generate timestamps scalably and
with global monotonicity, i.e. the timestamp order must
match the real time order in which the timestamps were
generated across all servers.

Centralized sequencers do not scale to our target transac-
tion rates. A state of the art centralized sequencer without
fault tolerance [19] can generate 122 million timestamps per
second. FaRMv1 can execute 140 million TATP transactions
per second on 90 machines [10].
NAM-DB [35] uses a centralized timestamp server and

caches timestamps at servers to avoid generating new times-
tamps per transaction. This improves scalability but it means
that timestamps are not globally monotonic: timestamps
generated on different servers will not be in real time order.
Using non-monotonic timestamps as transaction read and
write timestamps violates strictness.

Clock-SI [11] has no centralized time server but uses
loosely synchronized physical clocks on each server. Remote
reads in Clock-SI block until the remote server’s clock moves
past the transaction read timestamp. This operation is not
supported on RDMANICs and requires two-sided messaging.
Clock-SI is also not globally monotonic.
Spanner [6] uses Marzullo’s algorithm [25] to maintain

globally synchronized real time. Servers synchronize their
local clocks with a time master periodically. The algorithm
accounts for synchronization uncertainty explicitly by rep-
resenting time as an interval, which is computed using the
round trip time of synchronization requests, the master time
returned by requests, and an assumed bound on the rate drift
of the local clock. Timemasters use atomic clocks and/or GPS
that are synchronized with global real time, and there are
multiple clock masters for fault tolerance. Servers synchro-
nize with clock masters every 30 seconds. Spanner’s uncer-
tainties are 1–7ms, which is acceptable in a geo-distributed
database where latencies are dominated by WAN round trips.
These uncertainties are too high for FaRM, which is de-

signed for sub-millisecond transaction latencies using low
latency RDMA networks to scale out within a data center.
We also did not want to depend on atomic clocks and GPS
as they are not widely available in all data centers.

We also use timestamp ordering based on real time, with
clock synchronization using Marzullo’s algorithm [25] but



SyncState ← ∅
function SYNC

Snew .Tsend ← LOCALTIME()
Snew .TCM ←MASTERTIME() ◃ this is an RPC
Snew .Tr ecv ← LOCALTIME()
Sync ← Sync ∪ {Snew }

function TIME
T ← LOCALTIME()
L←maxS ∈Sync (S .TCM + (T − S .Tr ecv )(1 − ϵ))
U ←minS ∈Sync (S .TCM + (T − S .Tsend )(1 + ϵ))
return [L,U ]

Figure 1: Synchronization with Marzullo’s algorithm

with a design and implementation that provide an average
uncertainty below 20 microseconds, two orders of magni-
tude lower than in Spanner. We use only the cycle counters
present on all CPUs, allowing any server in a cluster to func-
tion as a clock master (CM) without additional hardware.
Non-clock masters periodically synchronize their clocks

with the current clock master using low-latency, CPU-
efficient RPCs based on RDMA writes [9]. Round-trip times
are in the tens of microseconds even under load and a single
clock master can handle hundreds of thousands of synchro-
nization requests per second while also running the applica-
tion without noticeable impact on application throughput.
As shown in Figure 1, each successful synchronization

records the local cycle counter value before sending the
request and after receiving the response, and the time at
the clock master. This synchronization state and the current
local cycle counter value are used to compute a time interval
[L,U ] that contains the current time at the clock master. The
width of the interval — the uncertainty — is the RTT of the
synchronization plus a drift factor. The drift factor is the
clock drift bound ϵ multiplied by twice the time elapsed
since the synchronization request was sent.

State from any valid past synchronization can be used to
compute L andU . The smallest correct time interval [L,U ] is
the intersection of all the intervals computed from all valid
past synchronizations. Naively this would require keeping
an unbounded amount of state. We optimize this by only
remembering two past synchronizations: one that gives the
best lower bound and one that gives the best upper bound.
This returns the same bounds but keeps bounded state.

Synchronization state is kept in a shared memory data
structure on each machine. Any thread can read this state
to compute a time interval. We also allow any thread to syn-
chronize with the clock master and update the state. For
threads that also run application code, these requests are
interleaved non-preemptively with execution of application
code. This leads to scheduling delays in processing synchro-
nization requests and responses causing high uncertainty.

Hence in practice, we only send synchronization requests
from a single, high-priority thread that does not run applica-
tion code. FaRMv1 already uses such a high-priority thread
to manage leases for failure detection, and we use the same
thread to send synchronization requests in FaRMv2.
We assume that cycle counters are synchronized across

threads on a server to some known precision. On our plat-
form, the OS (Windows) synchronizes the cycle counters
across threads to within 1024 ticks (about 400 ns). This un-
certainty is included in the interval returned to the caller.
Time intervals in FaRMv2 are globally monotonic: if an

event at time [L1,U1] anywhere in the cluster happens-before
an event at time [L2,U2] anywhere in the cluster, thenU2 >
L1. We also guarantee that on any thread, the left bound L is
non-decreasing.
Frequent synchronization allows us to use conservative

clock drift bounds. Currently we use a bound of 1000 parts
per million (ppm), i.e. 0.1%. This is at least 10x higher than
the maximum allowed by the hardware specification on our
servers and at least 10x higher than the maximum observed
rate drift across 6.5 million server hours on our production
clusters with more than 700 machines.

Correctness in FaRMv2 requires clock frequencies to stay
within these bounds. We use the local CPU clock on each
machine, which on modern hardware is based on extremely
accurate and reliable crystal oscillators. In rare cases, these
can be faulty at manufacture: we detect these cases using
an initial probation period when a server is added to the
cluster, during which we monitor clock rates but do not use
the server. Clock rates can also change slowly over time
due to aging effects and temperature variation (e.g., [15]).
FaRMv2 continuously monitors the clock rate of each non-
CM relative to the CM. If this exceeds 200 ppm (5x more
conservative than the bound we require for correctness), it
is reported to a centralized service that removes either the
non-CM or the CM, if the CM is reported by multiple servers.

4.2 FaRMv2 commit protocol
Figure 2 shows FaRMv2’s transaction protocol as a time dia-
gram for one example transaction. The line markedC shows
the coordinator thread for this transaction. The other lines
show other servers with primaries and backups of objects
accessed by the transaction. FaRMv2 uses primary-backup
replication. In this example the transaction reads two objects
O1 and O2 and writes a new value O ′1 to O1. Each object is
replicated on one primary and one backup. The backup for
O2 is not shown as backups of objects that are read but not
written do not participate in the protocol.

Transactions obtain a read timestamp when they start ex-
ecuting and transactions that modify objects obtain a write



C

P1

B1

P2

O1,T1

O1’

LOCK VALIDATE COMMIT
BACKUP

START_TX

R = 
GET_TS()

READ(O2)

IF T1 > R
READ OLD
VERSION

WRITE(O1 , O1’)

O2,T2

IF T2 > R
READ OLD
VERSION W =

GET_TS()

COMMIT

IF NOT
LOCKED
ABORT

T2’

IF LOCKED(O2)
OR T2 ’ ≠ T2

ABORT

O1‘,W

COMMIT
PRIMARY

ALLOCATE
OLD VERSION 

TRY LOCK 
O1@T1

INSTALL 
O1’(W)

UNLOCK

INSTALL 
O1’(W)

TRUNCATE

TX_COMMITTED

WO1‘,T1

READ(O1)

Execution and commit timeline for a transaction that reads two objects and writes one of them. Solid arrows show RDMA writes. Dashed
arrows show RDMA reads and hardware acks for RDMA writes.

Figure 2: FaRMv2 commit protocol
function GET_TS
[L,U ] ← TIME() ◃ U is in the future here.
SLEEP((U − L)(1 + ϵ)) ◃Wait out uncertainty.
returnU ◃ U is now in the past.

ϵ is the clock drift bound.

Figure 3: Timestamp generation (strict serializability)

timestamp when they commit. FaRMv2 serializes transac-
tions in timestamp order: read-only transactions are serial-
ized by their read timestamp and read-write transactions are
serialized by their write timestamp.
The application starts a transaction by calling start_tx,

which acquires the read timestamp R. The reads of the trans-
action are then performed at time R, i.e., successful reads see
the version with the highest write timestamp that is less than
or equal to R. The time at the CM must exceed R before the
first read can be issued, to ensure that no future writes can
have a timestamp less than or equal to R. This is necessary
for opacity. The time at the CM must also be less than or
equal to R at the time start_tx is invoked. This is necessary
for strictness, to avoid reading a stale snapshot. FaRMv2
satisfies both conditions by setting R to the upper bound of
the time interval when start_tx is called and waiting out
the uncertainty in this interval before the first read is issued
(Figure 3).

The application can then issue reads and writes for ob-
jects in the global address space. Reads are always from the
primary replica. If the read object has a timestamp greater
than R, FaRMv2 will find and return the correct snapshot
version of the object (not shown in the figure).

Writes to objects are buffered locally. When the applica-
tion calls commit, the coordinator sends lock messages to
all primaries that have objects in the write set. If the versions
of all these objects equal the versions read and they could be

successfully locked, the coordinator acquires a write times-
tampW .W must be greater than the time at the CMwhen all
write locks are taken, to ensure that any conflicting reader
with read timestamp R′ ≥W will see either the lock or the
eventual commit.W must also be less than the time at the
CM when read validation begins, to ensure that the trans-
action will see any conflicting writer with write timestamp
W ′ ≤W . Both conditions are satisfied by computingW us-
ing the procedure shown in Figure 3: acquiring a timestamp
in the future and then waiting until the timestamp has gone
into the past.

Note that we do not send lock messages to backups. This
makes writes more efficient but it means that reads of the
latest version of an object must always be from the primary,
preventing reads from backups for load balancing. In FaRM,
we rely on sharding for load-balancing: each physical ma-
chine is the primary for some shards and the backup for other
shards and thus reads to different shards can be balanced
across different machines.

The coordinator then validates objects that were read but
not written, using RDMA reads to re-read object versions
from the primaries. Validation succeeds only if all such ob-
jects are unlocked and at the version read by the transaction.
The coordinator then sends commit-backupmessages to the
backups of the write-set objects using RDMA writes. When
all commit-backup messages have been acknowledged by
the remote NICs, the coordinator sends commit-primary
messages to the primaries of the write-set objects using
RDMA writes. Finally, truncate messages are sent to write-
set primaries and backups to clean up per-transaction state
maintained on those servers. These are almost always piggy-
backed on other messages. On receiving commit-primary,
primaries install the new versions of write-set objects and un-
lock them. Backups install the new values when they receive
truncate.



This protocol retains all the one-sided RDMA optimiza-
tions in FaRMv1’s commit protocol with no added commu-
nication. It adds two uncertainty waits which are executed
locally on the coordinator. As in FaRMv1, the protocol can
also exploit locality, i.e. co-locating the coordinator with the
primaries. If all primaries are co-located with the coordina-
tor then only commit-backup and piggybacked truncate
messages are sent and there is no remote CPU involvement
at all on the critical path.
In addition, FaRMv2 skips validation for all read-only

transactions, which was not possible in FaRMv1. Committing
a read-only transaction in FaRMv2 is a no-op. This can reduce
the number of RDMA reads issued by read-only transactions
by up to 2x compared to FaRMv1.
By default FaRMv2 transactions are strictly serializable.

FaRMv2 also supports snapshot isolation (SI) and non-strict
transactions. It does not support weaker isolation levels than
snapshot isolation. Non-strictness and SI can be set per trans-
action: developers need only use this for transactions where
they will improve performance significantly without affect-
ing application correctness. SI and non-strictness are imple-
mented with small changes to the protocol shown in Figure 2.
SI transactions in FaRMv2 skip the validation phase for

read-only objects (written objects are implicitly validated
during the lock phase, which fails if the object is not at the
version read). The uncertainty wait of write timestamp acqui-
sition is deferred until just before returning tx_committed
to the application. Thus write locks are not held until the
uncertainty wait completes, reducing contention. The uncer-
tainty wait can also be overlapped with commit-backup and
commit-primary, improving latency.
Strictness can be relaxed in FaRMv2 both for serializable

and SI transactions. For SI transactions, strictness means
that if transaction A starts after transaction B, then the read
timestamp of A is greater than or equal to the write times-
tamp of B. Non-strict transactions choose the lower bound
L on the time interval [L,U ] as the read timestamp when
start_tx is called, without any uncertainty wait. Non-strict
SI transactions compute their write timestamp as their upper
boundU of the timer interval at the point of write timestamp
acquisition, again without any uncertainty wait. The uncer-
taintywait for thewrite timestamp is required for serializable
read-write transactions, whether strict or non-strict.

4.3 Fast-forward for failover
FaRMv2 maintains global monotonicity across clock master
failures. When the clock master fails or is removed, a new
clock master is chosen. As we do not rely on externally
synchronized time hardware such as atomic clocks or GPS,
the new clock master must continue based on a time interval
obtained by synchronizing with a previous clock master.

New
CM

Non
CM

DISABLE
CLOCK

UPDATE
FF

ENABLE
CLOCK

FF  max(FF, Time().U)

FF 
max(Time().U,

maxMACHINES (FF))

LEASE
EXPIRY
WAIT

DISABLE
CLOCK

ENABLE
CLOCK

AT
[FF, FF]

T ime() returns the current time interval [L,U ] on the coordinator.

Figure 4: Clock recovery after clock master failure

Adding the uncertainty in this interval to all time intervals
generated in the future would maintain monotonicity, but
uncertainty could grow without bound.
FaRMv2 shrinks the uncertainty on a new clock master

during clock master failover. It uses a fast-forward protocol
that we integrated with FaRM’s reconfiguration protocol [10]
which is used to add or remove servers from the cluster.

In FaRM, a configuration is identified by a unique sequence
number and specifies the membership of the cluster, with
one member distinguished as the “configuration manager”
(CM) for the configuration. Leases are used for failure detec-
tion. Each non-CM maintains a lease at the CM and the CM
maintains a lease at each non-CM. Lease renewals are peri-
odically initiated by each non-CM via a 3-way handshake
which renews both the non-CM’s and the CM’s leases.

Configurations are stored in Zookeeper and are changed
by atomically incrementing the sequence number and in-
stalling the new configuration. A configuration change is
initiated by the current CM if it suspects a non-CM has
failed or a new server joins the cluster, and by a non-CM if
it suspects the CM has failed. The server initiating the con-
figuration change, if successful, becomes the new CM. After
committing the configuration change to Zookeeper, the new
CM uses a 2-phase protocol to commit the new configuration
to all the servers in the new configuration. This mechanism
handles single and multiple node failures as well as network
partitions. If there is a set of connected nodes with the major-
ity of the nodes from the previous configuration, with at least
one replica of each object, and with at least one node that
can update the configuration in Zookeeper, then a node from
this partition will become the CM. Otherwise, the system
will block until this condition becomes true.

In our design, the CM also functions as the clock master.
This lets us reuse messages in the reconfiguration proto-
col for clock master failover, and lease messages for clock
synchronization. Figure 4 shows the reconfiguration/fast-
forward protocol. Dotted lines show existing messages in
the reconfiguration protocol; bold lines show messages that
were added for clock failover. For simplicity, the figure omits
the interaction with Zookeeper (which remains unchanged)
and shows only one non-CM. To implement fast-forward,



each server maintains a local variable FF marking the last
time clocks were fast-forwarded. The new CM first disables
its own clock: the clock continues to advance, but timestamps
are not given out and synchronization requests from other
servers are rejected. It then sends a new-config message
to all non-CMs. On receiving new-config, each non-CM
disables its clock and sets FF to the maximum of its current
value and the upper bound on the current time interval. This
updated value is piggybacked on the new-config-ack sent
back to the CM.

After receiving all acks from all non-CMs, the CMwaits for
one lease expiry period which ensures that servers removed
from the configuration have stopped giving out timestamps.
The CM then advances FF to the maximum of the upper
bound of its current time interval and the maximum FF on
all servers in the new configuration including itself. It then
commits the new configuration by sending config-commit,
sends FF to all non-CMs (advance), and waits for acknowl-
edgements (advance-ack). After receiving acks from all
non-CMs, the CM enables its clock with the time interval
set to [FF , FF ]. The additional round trip to propagate FF
ensures that time moves forward even if the new CM fails
immediately after enabling its own clock. After receiving
config-commit, non-CMs send periodic synchronization
requests to the new CM. On the first successful synchro-
nization, a non-CM clears all previous synchronization state,
updates the synchronization state and enables its clock.
This protocol disables clocks for up to three round trips

plus one lease expiry period (e.g., 10ms) in the worst case.
While clocks are disabled, application threads requesting
timestamps are blocked. If the old CM was not removed
from the configuration, then it remains the CM and we do
not disable clocks or fast-forward. If only the old CM was
removed (no other servers fail), the “lease expiry wait” is
skipped as we know that the old CM’s lease has already
expired. Adding new servers to the configuration does not
disable clocks. The worst-case clock disable time is incurred
when the CM and at least one non-CM fail at the same time.

Fast-forward can cause the FaRMv2 clock to diverge from
external time. If synchronization with external time is impor-
tant, this can be done by “smearing”, i.e., gradually adjusting
clock rates without at any point violating the drift bound
assumptions. Currently FaRMv2 does not do smearing as
there is no need for timestamps to match external time.

4.4 Multi-versioning
FaRMv2 supports multi-version concurrency control [2].
This can help reduce aborts in read-only transactions caused
by conflicting writes. Multi-versioning is implemented us-
ing a per-object, in-memory linked list of old versions in
decreasing timestamp order. This is optimized for the case

where most objects have no old versions, and those that
do have only a few. These are reasonable assumptions for
our current production workloads which have interactive
read-only queries and transactional updates but not batch
analytics that take hours or days. For example, we have built
a distributed graph database, A1 [3] on FaRMv2 which must
serve graph queries within 50ms as part of a larger service.

Reading an object always starts at the head version whose
location does not change during the lifetime of the object.
This ensures that we can always read the head version using
a single one-sided RDMA without indirection.

Each head version in FaRMv2 has a 128-bit headerH which
contains a lock bit L, a 53-bit timestamp TS, and (in multi-
version mode) an old-version pointer OVP. TS contains the
write timestamp of the last transaction to successfully update
the object. L is used during the commit protocol to lock
objects. OVP points to a singly linked list of older versions of
the object, ordered by decreasing timestamp. Other header
bits are inherited from FaRM [9, 10].

If the head version timestamp is beyond the transaction’s
read timestamp, the linked list is traversed, using RDMA
reads if the version is remote, until a version with a times-
tamp less than or equal to the read timestamp is found.
Old versions also have a 128-bit header but only use the
TS and OVP fields. Old versions are allocated from globally-
addressable, unreplicated, RDMA-readable regions with pri-
maries co-located with the primaries of their head versions.
Old version memory is allocated in 1MB blocks carved

out of 2GB regions. Blocks are owned and accessed by a
single thread which avoids synchronization overheads. Each
thread has a currently active block to which allocation re-
quest are sent until the block runs out of space. Within the
block we use a bump allocator that allocates the bytes in the
block sequentially. Allocating an old version thus requires
one comparison and one addition, both thread-local, in the
common case.
An old version is allocated when a thread on a primary

receives a lock message. The thread allocates space for the
old version, locks the head version, copies the contents as
well as the timestamp and old-version pointer of the head
version to the old version, and then acknowledges to the
coordinator. When commit-primary is received, a pointer
to the old version is installed at the head version before
unlocking. As allocation is fast, the dominant cost of creating
old versions is the memory copy. This copy is required in
order to keep the head version’s location fixed, which lets
us support one-sided RDMA reads.

FaRMv2 also supports stale snapshot reads, which are read-
only transactions that can executewith a specified read times-
tamp R which can be in the past, i.e. less than the current
time lower bound L. This is intended to support distributed
read-only transactions that can speed up large queries by



parallelizing them across the cluster and also partitioning
them to exploit locality. A master transaction that acquires
read timestamp R can send messages to other servers to start
slave transactions at time R, ensuring that all the transac-
tions execute against the same snapshot. As R may be in
the past when the message is received, this requires stale
snapshot reads.

4.5 Garbage collection
FaRMv2 garbage-collects entire blocks of old-version mem-
ory without touching the object headers or data in the block.
A block is freed by the thread that allocated it to a thread-
local free block pool. No synchronization is required unless
the free block pool becomes too large (at which point blocks
are freed to a server-wide pool).
Each old version O has a GC time that is equal to the

write timestamp of the transaction that allocated O . If the
transaction that allocated O aborted, then the GC time of O
is zero. The GC time of a block is the maximum GC time of
all old versions in the block. It is kept in the block header and
updated when transactions commit. A block can be freed and
reused when its GC time is less than the GC safe point GC,
which must be chosen such that no transaction will attempt
to read old versions in the block after it is freed.
To compute GC, FaRMv2 uses the periodic lease renewal

messages to propagate information about the oldest active
transaction (OAT) in the system. Each thread maintains a
local list of currently executing transactions with that thread
as coordinator, and tracks the oldest read timestamp of these:
this is the per-thread OAT. When sending a lease request,
each non-CM includes the minimum of this value across all
threads, and of the lower bound of the current time interval:
this is the per-machine OAT. The CM tracks the per-machine
OAT of all machines in the configuration including itself.
The global OAT is the minimum of all of these values and is
included in all lease responses to non-CMs.
Each non-CM thus has a slightly stale view of the global

OAT, which is guaranteed to be less than or equal to the
global OAT and will catch up to the current value of the
global OAT on the next lease renewal. The global OAT is
guaranteed to be less than or equal to the read timestamp of
any currently running transaction in the system. It is also
guaranteed to be less than or equal to the lower bound L
of the time interval on any thread in the system. L is non-
decreasing on every thread and transactions created in the
future, both strict and non-strict, will have a read timestamp
greater than L.

It is not safe to use global OAT as the GC safe point GC in
the presence of stale snapshot reads and failures. The coor-
dinator of a master transaction with read timestamp R can
fail after sending a message to execute a slave transaction
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B@8
B@7

B@3

A@9 Block X
GC time = 8

Block Y
GC time = 9

Thread 1 Thread 2
Head

versions

Figure 5: Old versions in FaRMv2

but before the slave transaction has been created. The global
OAT could then advance beyond R, causing a block to be
freed that is then read by a slave transaction, violating opac-
ity. FaRMv2 uses a second round of propagation to solve
this problem. The global OAT value received by each server
is propagated to all threads, and then included in lease re-
quests. The minimum global OAT value known to all servers
is tracked at the CM and sent back on lease responses. This
value is then used as the safe GC point GC.

Stale snapshot reads can only be created on a thread if the
timestamp R is greater than or equal to the thread’s view of
global OAT; otherwise start_tx returns an error. The global
OAT on any thread is guaranteed to be greater than equal to
the safe GC point on any other thread: this guarantees that
stale snapshot reads will never read freed memory.
Figure 5 shows a simple example with two objects A and

B with one and two old versions respectively, in two blocks
owned by two different threads. The list for a given object
is in decreasing timestamp order and the list pointers can
cross block and thread boundaries arbitrarily. Old versions
of the same object can be freed out of order and the list is
not guaranteed to be null-terminated. We use OAT and GC to
ensure that readers never follow a pointer to an old version
that has already been freed.

4.6 Early aborts
FaRMv2 keeps primary but not backup copies of old versions.
With n-way replication, this reduces the space and CPU over-
head of multi-versioning by a factor ofn. When a primary for
a region fails and a backup is promoted to primary, the new
primary will have no old versions for objects in that region.
Readers attempting to read the old version will abort. This
is a transient condition: if the transaction is retried it will be
able to read the latest version of O , which exists at the new
primary. As we expect failures to be relatively infrequent
we allow such “early aborts” during failures in return for
reduced common-case overheads.

Unlike the opacity violations in FaRMv1 described at the
beginning of this section, these early aborts do not require
significant additional developer effort. Developers need not



write code to check invariants after every read, detect infi-
nite loops, or handle use-after-free scenarios: all of which
were required when using FaRMv1. The code must already
handle aborts during the commit phase due to optimistic
concurrency control, e.g., by retrying the transaction. Early
aborts can be handled in the same way.

Allowing early aborts also lets us do eager validation [27]
as a performance optimization. If a serializable transaction
with a non-empty write set attempts to read an old version,
then FaRMv2 fails the read and aborts the transaction even if
the old version is readable, as the transaction will eventually
fail read validation. We also allow applications to hint that a
serializable RW transaction is likely to generate writes; in
this case we abort the transaction when it tries to read an
old version even if the write set is currently empty.
For some workloads, old versions are accessed so infre-

quently that the cost of multi-versioning outweighs the bene-
fit. FaRMv2 can operate in single-version mode. In this mode,
it does not maintain old versions even at the primaries.

5 EVALUATION
In this section, we measure the throughput and latency of
FaRMv2 and compare it to a baseline system without opacity.
We then measure the costs and benefits of multi-versioning.
Finally, we demonstrate FaRMv2’s scalability and high avail-
ability.

5.1 Setup
Our experimental testbed consists of up to 90 machines. As
we did not always have access to all 90 machines, all ex-
periments used 57 machines unless stated otherwise. Each
machine has 256 GB of DRAM and two 8-core Intel E5-2650
CPUs (with hyper-threading enabled) running Windows
Server 2016 R2. FaRM runs in one process per machine with
one OS thread per hardware thread (hyperthread). We use
15 cores for the foreground work and 1 core for lease man-
agement and clock synchronization. By default clocks are
synchronized at an aggregate rate of 200,000 synchroniza-
tions per second, divided evenly across all non CMs. Each
machine has one Mellanox ConnectX-3 56 Gbps Infiniband
NIC, connected to a single Mellanox SX6512 switch with full
bisection bandwidth. All graphs show average values across
5 runs with error bars showing the minimum and maximum
across the 5 runs. Most experiments ran for 60 seconds after
a warmup period, but the availability experiments ran for 10
minutes.
We use two benchmarks: the first is TPC-C [30], a well-

known database benchmark with transactions that access
hundreds of rows. Our implementation uses a schema with
16 indexes. Twelve of these only require point queries and
updates and are implemented as hash tables. Four of the
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Figure 6: TPC-C throughput

indexes also require range queries and are implemented as B-
Trees. We load the database with 240 warehouses per server,
scaling the database size with the cluster size. We partition
all tables by warehouse except for the small, read-only ITEM
table which is replicated to all servers. We run the full TPC-
C transaction mix and report throughput as the number of
neworder transactions committed per second.
Our second benchmark is based on YCSB [5]. We used

a database of 285 million keys, with 16-byte keys and 1KB
values, stored in a single B-Tree with leaves spread randomly
across a 57-machine cluster, i.e., without any range partition-
ing. The B-Tree leaves were large enough to hold exactly
one key-value pair, so a single key read or update caused
one FaRMv2 object read or write.
We evaluate two systems. The first, BASELINE, is an op-

timized version of FaRMv1 [9, 10] that significantly out-
performs our previously reported TPC-C performance for
FaRMv1. The second system is FaRMv2, which adds opacity
and multi-versioning to this optimized baseline. Both sys-
tems are run with strict serializability and 3-way replication
unless stated otherwise. When running TPC-C we use the
single-version mode of FaRMv2 by default as this gives the
best performance for this workload.

5.2 Overhead of opacity
Figure 6 shows the saturation throughput of BASELINE, and
of FaRMv2 in single-version mode with different combina-
tions of serializability/SI and strictness/non-strictness.
FaRMv2 has a throughput of 3.77 million neworders per

second on 57 machines with strict serializability, 3.6% lower
than BASELINE. The overhead of opacity comes from uncer-
tainty waits, clock synchronization RPCs, timestamp gener-
ation (querying the cycle counter and thread-safe access to
shared synchronization state) and OAT propagation across
threads and machines (which is enabled in both single-
version and multi-version mode). Abort rates are extremely
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low (0.002%) for both BASELINE and FaRMv2. Relaxing strict-
ness improves performance by 3% with serializability, by
removing the overhead of the uncertainty wait on the read
timestamp. Using SI rather than serializability improves per-
formance by a further 2.7% by removing the uncertainty wait
on the write timestamp, and also the overhead of validation.
Figure 7 shows a throughput-latency curve generated

by varying the level of concurrency in the workload. Both
FaRMv2 and BASELINE are able to sustain close to peak
throughput with low latency, e.g., FaRMv2 has a 99th per-
centile neworder latency of 835 µs at 94% of peak throughput.
At high load, latency is dominated by queueing effects in
both systems. At low load, the cost of opacity is an additional
69 µs (11%) of latency at the 99th percentile and 39 µs (25%)
at the median. The throughput cost of opacity is small. The
added latency can be significant for short transactions but
we believe it is a price worth paying for opacity.

We also measured the effect of skew on performance, us-
ing the YCSB benchmark with a 50-50 ratio of key lookups
and updates (Figure 8). Keys are selected from a Zipf distribu-
tion, with a higher skew parameter θ giving a more skewed
distribution. At low skew, FaRMv2 has around 3% lower
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performance than BASELINE. At high skew, both systems
have two orders of magnitude lower throughput because of
aborts due to high conflict rates and performance differences
are within experimental error. The cost of opacity does not
increase with conflict rates.

5.3 Multi-versioning
Multi-versioning can improve performance by avoiding
aborts of read-only transactions, at the cost of allocating
and copying old versions. For TPC-C, this cost is a 3.2% re-
duction in peak throughput (1.5% for allocation/GC and 1.7%
for copying). There is no performance benefit for TPC-C
from using MVCC as the abort rate is extremely low even in
“single-version” mode.

Multi-versioning has benefits when single-version opera-
tion would frequently abort read-only transactions due to
conflicts with updates. FaRMv2 bounds the memory usage
of old versions to keep sufficient space for head versions and
their replicas. When this limit is reached, writers will not
be able to allocate old versions during the LOCK phase. We
implemented three strategies for handling this case, which
does not occur in the TPC-C experiments shown so far. We
can block writers at the lock phase until old version mem-
ory becomes available; we can abort them when old version
memory is not immediately available; or we can allow them
to continue by allowing old version allocation to fail, and
truncating the entire history of objects for which old ver-
sions could not be allocated. The last option improves write
performance at the risk of aborting readers.
We measured the performance of these different ap-

proaches using YCSB. The workload contained scans (range
queries) of varying length as well as single-key updates. The
start of each scan and the key for each update is chosen from
a uniform random distribution. We maintained a 50:50 ratio
of keys successfully scanned (keys in scans that completed
without aborting) to keys successfully updated. Old-version
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Figure 10: Scalability of FaRMv2

memory was limited to 2GB per server. Transactions that
aborted were retried until they committed. We report the av-
erage throughput from 10min of steady-state measurement
for each experimental configuration.

Figure 9 shows the throughput in millions of keys scanned
per second on a linear scale against the scan length on a log
scale. For scans that read a single key, BASELINE performs
slightly better than FaRMv2 as it does not have the over-
head of maintaining opacity and transactions that read a
single object do not perform validation. For scans of multiple
objects, BASELINE must validate every object read and per-
forms worse than FaRMv2. Beyond scans of length 100, both
single-version FaRMv2 (sv) and BASELINE lose throughput
rapidly because of aborted scans. The three multi-versioning
variants of FaRMv2 maintain high throughput up to scans of
length 10,000: at this point, mv-abort begins to lose perfor-
mance. mv-block and mv-truncate maintain throughput
up to scans of length 100,000 and then lose performance, with
mv-block performing slightly better than mv-truncate. For
longer scans, all strategies perform poorly.

The average scan latency for 10,000 keys was 750–850ms
and all the mv variants perform well at this point. Our target
applications have lower update rates and shorter queries.
All the mv variants perform well for these relatively short
queries, without any drop in throughput. In production we
use mv-truncate by default.

5.4 Scalability
Figure 10 shows the throughput of FaRMv2 with strict seri-
alizability as we vary the cluster size from 3, the minimum
possible with 3-way replication, to 90. Throughput scales
well, achieving 5.4 million neworders/s at 90 machines with
21,600 warehouses. This is the highest TPC-C transactional
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Figure 11: Scalability of clock synchronization

throughput we know of for a systemwith strict serializability
and high availability.1

We use an aggregate synchronization rate of 200,000 syn-
chronizations per second at the CM. As the cluster size in-
creases, this means individual non CMs synchronize less
frequently, causing the uncertainty to increase. Figure 10
also shows the average uncertainty wait as a function of
cluster size, which increases only moderately from 7.5 µs
to 12 µs: a 60% increase in uncertainty for a 30x increase in
cluster size.

We emulated the effect of clusters larger than 90 machines
on uncertainty by down-sampling the synchronization re-
sponses from the CM, on each non CM. E.g., at a sampling
ratio of 10 with 90 machines, non-CMs discard 9 out of 10
synchronization responses, which emulates the rate at which
non-CMs would synchronize in a cluster of 900 machines.
Figure 11 shows the effect of down-sampling on a 90-machine
cluster with a sampling ratio varying from 1 to 10. Across
this factor of 10, the mean uncertainty wait increases by 39%,
from 12 µs to 16.7 µs.
Thus our centralized time synchronization mechanism

scales well with only small increases in uncertainty when the
cluster size is increased by orders of magnitude. While other
factors such as network bandwidth and latency might limit
application performance, the synchronization mechanism
scales well to moderate sized clusters of up to 1000 machines.

5.5 Availability
We measured availability in FaRMv2 by killing one or more
FaRMv2 processes in a 57-machine cluster running the TPC-
C workload and using 10ms leases for failure detection.
For these experiments we measure throughput over time
in 1ms intervals. Table 1 summarizes results for 3 failure
cases: killing a non-CM, killing the CM, and killing both the

1Like those of other in-memory systems [4, 10, 36], our results do not satisfy
the TPC-C scaling rules for number of warehouses.



Machines failed Clock disable time Recovery time Re-replication time
1 non-CM 0 49ms (44–56ms) 340 s (336–344 s)
CM 4ms (3–4ms) 58ms (27–110ms) 271 s (221–344 s)
CM and 1 non-CM 16ms (11–20ms) 71ms (61–85ms) 292 s (263–336 s)

Table 1: Recovery statistics
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Figure 12: Failure and recovery timeline

CM and a non-CM. It shows mean values across 5 runs with
the min/max range in parentheses.
The clock disable time is the elapsed time between the

new CM disabling and re-enabling the clock. The recovery
time is the time from when a failure was first suspected, to
the time when the throughput after failure reaches the mean
throughput before the failure. The re-replication time is the
time taken for FaRMv2 to bring all regions affected by the
failure back to full (3-way) redundancy.

Figure 12 shows throughput over time for one of the runs
where we killed the CM as well as a non CM. The solid
vertical lines mark the point at which FaRMv2 first suspects
a failure, and the point at which we recover full throughput.
The dashed vertical lines show the points at which the CM’s
clock was disabled and then enabled. The timeline does not
show the re-replication time, which is much longer than the
timescale of the graph.
FaRMv2 provides high availability with full throughput

regained within tens of milliseconds in most cases. Even
before this point, transactions can continue to execute if they
only read objects whose primaries did not change, they only
write objects none of whose replicas changed, and clocks are
enabled. When clocks are disabled, transactions block when
trying to acquire read or write timestamps. Clocks are not
disabled if only non-CMs fail. If only the CM fails they are
disabled for 4ms, and if both the CM and a non-CM fail they
are disabled for 16ms on average.

Data re-replication takes around 5minutes because it is
paced tominimize the performance impact on the foreground
workload. Re-replication happens in the background and con-
currently with the foreground workload. It does not affect
availability. The pacing is a configurable parameter: more
aggressive re-replication will shorten the window of vulner-
ability to additional failures but will contend for network
and CPU resources with the foreground workload.

5.6 Operation logging
NAM-DB [35] uses replicated in-memory operation log-
ging with no checkpointing or logging to disk. Data is not
replicated; instead each committed RW transaction writes
the transaction description, inputs, and write timestamp to
in-memory logs on three machines. The logging is load-
balanced across all machines. This configuration has high
TPC-C throughput (6.5 million neworders/s on 57 machines)
but it is not realistic: once the in-memory logs fill up, the
system cannot accept any more writes. A realistic configu-
ration would need frequent checkpointing to truncate the
logs, with substantial overhead.
Operation logging also hurts availability: on any failure,

all the logs must be collected in a single location, sorted, and
the operations re-executed sequentially, which can be orders
of magnitude slower than the original concurrent execution.
FaRMv2 provides high availability through replication.

It uses in-memory logs at backups which are continuously
truncated by applying them to in-memory object replicas.
During recovery, after clocks have been enabled, transactions
can read any region whose primary did not change and write
to a region if none if its replicas changed. Other regions can
be accessed after a short lock recovery phase during which
the untruncated portion of the in-memory logs are scanned
in parallel by all threads and write-set objects are locked.

For a fair comparison we implemented operation logging
in FaRMv2 and measured the same configuration as NAM-
DB: operation logging, multi-versioning, non-strict snapshot
isolation. FaRMv2 achieves 9.9 million neworders/s with 90
machines. With 57 machines, the throughput is 6.7 million
neworders/s, 4% higher than NAM-DB’s throughput with
the same number of machines, comparable CPUs, and using
older, slower CX3 NICs.



6 RELATEDWORK
In this section we compare FaRMv2’s design with some other
systems that support distributed transactions. We do not aim
to cover the entire space of distributed transaction proto-
cols or systems [2, 14]. Instead we focus on a few systems
that highlight differences in the use of one-sided RDMA,
strictness, serializability, opacity, availability, and timestamp
generation.
Most systems with distributed transactions and data par-

titioning use RPCs to read remote objects during execu-
tion which requires CPU processing at the remote partici-
pants. Traditional 2-phase commit also requires processing of
PREPARE andCOMMIT messages at all participants, includ-
ing read-only ones. Calvin [29] uses deterministic locking
of predeclared read and write sets to avoid 2PC but read
locks must still be taken using messages. Sinfonia [1] can
piggyback reads on the 2PC messages in specialized cases
to reduce the number of messages at read-only participants.
Sundial [34] uses logical leases to dynamically reorder trans-
actions to minimize conflicts, and caching to reduce remote
accesses. This provides serializability but not strictness, and
lease renewals still require RPCs to read-only participants.
Systems that use one-sided RDMA reads can avoid CPU

processing at read-only participants. NAM-DB [35] uses
RDMA reads during execution and only takes write locks
during commit, but it only provides SI and not serializabil-
ity. DrTM [4, 33] provides serializability by using hardware
transactional memory (HTM) to detect conflicting writes.
FaRM uses an additional validation phase with RDMA reads
to detect conflicting writes.
With traditional 2PC, if a coordinator fails, the system

becomes unavailable until it recovers. Spanner [6] replicates
both participants and coordinators to provide availability.
FaRM and RAMCloud [23] replicate data but not coordina-
tors: they recover coordinator state for untruncated trans-
actions from participants. In FaRM, transaction recovery is
parallelized across all machines and cores and runs concur-
rently with new application transactions. Calvin replicates
transactional inputs and sequence numbers to all nodes in
the system and re-executes transactions issued since the last
checkpoint. NAM-DB replicates inputs of committed trans-
actions but does not checkpoint or replicate data and must
re-execute all past transactions sequentially on failure before
the system becomes available.

Opacity requires consistent read snapshots during execu-
tion which can be provided with pessimistic concurrency
control, or with timestamp ordering. FaRMv1, DrTM, RAM-
cloud, Sundial, and FaSST [20] use OCC with per-object
versions rather than global timestamps, and hence do not
provide opacity. NAM-DB uses timestamp vectors with one
element per server, read from a timestamp server and cached

and reused locally. NAM-DB does not provide strictness.
Clock-SI [11] uses physical clocks at each server: remote
reads must use RPCs that block at the remote server until
the local clock has passed the transaction read timestamp.
Clock-SI does not rely on a clock drift bound for correct-
ness but needs physical clocks to be loosely synchronized
for performance. It also does not provide strictness.
Spanner [6] and FaRMv2 use timestamp ordering based

on real time with explicit uncertainty computed according to
Marzullo’s algorithm [25], and both provide opacity. Unlike
Spanner, FaRMv2 does not rely on globally synchronized
hardware such as atomic clocks or GPS, and it achieves two
orders of magnitude lower uncertainty than Spanner within
the data center by exploiting fast RDMA networks. Span-
ner uses pessimistic concurrency control for serializability
whereas FaRMv2 uses OCC and supports one-sided RDMA
reads.
Timestamp ordering and OCC have been used in many

scale-up in-memory systems, both software transactional
memories (STMs) and in-memory databases. They typically
use shared-memory primitives such as CAS to generate
timestamps. TL2 [8] and LSA [27] are some of the first STMs
to use timestamp ordering and OCC to provide strict se-
rializability and opacity. TL2 is single-versioned and LSA
is multi-versioned with eager validation. Silo [31, 36] uses
OCCwith read-set validation and without opacity for strictly
serializable transactions, and timestamp ordering based on
epochs for stale snapshot reads with opacity. Hekaton [22]
uses OCC and timestamp ordering with both single- and
multi-versioning. It also supports pessimistic concurrency
control.

7 CONCLUSION
FaRMv2 is a distributed transactional system that provides
opacity, high availability, high throughput, and low latency
within a data center. It uses timestamp ordering based on
real time with clocks synchronized to within tens of mi-
croseconds; a protocol to ensure correctness across clock
master failures; and a transactional protocol that uses one-
sided RDMA reads and writes instead of two-sided messages.
FaRMv2 achieves 5.4 million neworders/s on a TPC-C trans-
action mix and can recover to full throughput within tens
of milliseconds of a failure. To our knowledge this is the
highest throughput reported for a system with opacity and
high availability, which are important to simplify distributed
application development.
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